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Fig. 1. We present an approach for hands-free videoconferencing. Given the view of an egocentric camera, that is attached to an eye-glasses frame, we predict
a frontalised video stream which is common in videoconferencing.

We introduce a method for egocentric videoconferencing that enables hands-
free video calls, for instance by people wearing smart glasses or other mixed-
reality devices. Videoconferencing portrays valuable non-verbal communi-
cation and face expression cues, but usually requires a front-facing camera.
Using a frontal camera in a hands-free setting when a person is on the
move is impractical. Even holding a mobile phone camera in the front of
the face while sitting for a long duration is not convenient. To overcome
these issues, we propose a low-cost wearable egocentric camera setup that
can be integrated into smart glasses. Our goal is to mimic a classical video
call, and therefore, we transform the egocentric perspective of this camera
into a front facing video. To this end, we employ a conditional generative
adversarial neural network that learns a transition from the highly distorted
egocentric views to frontal views common in videoconferencing. Our ap-
proach learns to transfer expression details directly from the egocentric view
without using a complex intermediate parametric expressions model, as it is
used by related face reenactment methods. We successfully handle subtle
expressions, not easily captured by parametric blendshape-based solutions,
e.g., tongue movement, eye movements, eye blinking, strong expressions and
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depth varying movements. To get control over the rigid head movements
in the target view, we condition the generator on synthetic renderings of
a moving neutral face. This allows us to synthesis results at different head
poses. Our technique produces temporally smooth video-realistic renderings
in real-time using a video-to-video translation network in conjunction with
a temporal discriminator. We demonstrate the improved capabilities of our
technique by comparing against related state-of-the art approaches.
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1 INTRODUCTION
Videoconferencing is popular as it portrays a wide range of com-
munication signals, beyond traditional phone calls that are used,
to face-to-face conversations that use visual cues such as facial
expressions or eye gaze. This improves engagement in conversa-
tions. Video calls usually require a camera observing the face from
a frontal perspective to allow good facial coverage. While feasible
in controlled and static indoor settings, e.g., when working at your
desk, such camera placement is not feasible in many other everyday
scenarios where people call each other with mobile devices, espe-
cially, when walking outdoors in dynamic environments. In such
outdoor settings, or even when walking around or just sitting at
home, holding up a camera or mobile phone in front of your face for
a long duration to transmit a frontal video of yourself is not viable.
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Recently, reenactment algorithms are combiningmodel-based and
learning-based scene reconstruction and rendering. They showed
the ability to control and modify facial expressions and poses in
video filmed from a frontal perspective in a highly photo-realistic
manner [Kim et al. 2018; Nagano et al. 2018; Suwajanakorn et al.
2017; Thies et al. 2020, 2019]. This enables a new level of visual qual-
ity in various applications, such as avatar generation [Pinscreen
2019], visual dubbing [Kim et al. 2019], video post-production [Fried
et al. 2019], and virtual assistant generation [Thies et al. 2020]. Simi-
lar methods were also used to improve virtual reality teleconferenc-
ing with head-mounted displays (HMDs). Here, it was shown that
reenactment techniques, in combination with additional sensors
placed inside and outside of the HMD, enable it to virtually remove
the display from a user’s face, and thus portray an unobstructed
view of the user or her avatar to every participant of the VR tele-
conference [Lombardi et al. 2018, 2019; Olszewski et al. 2016; Thies
et al. 2018a]. However, wearing such non-see-through VR HMDs
while walking around in general environments is impractical.

We, therefore, present a new approach to enable people to start
hands-free video calls even when they roam around in general
indoor and outdoor environments. We want our approach to be
similarly convenient and non-encumbering as audio calls with a
headset, while additionally transmitting a frontal video image of the
person. To this end, we propose an egocentrically worn hardware
setup and a new algorithm to achieve this goal. Our approach uses
a single commodity RGB fish-eye camera mounted to the side of an
eye glass frame. While our prototype setup currently has a larger
form factor, we argue that mass production of future smart and
augmented reality glasses will make it easy to integrate starkly
miniaturised cameras in this way. The related designs of Google
Glasses or the Snapchat Spectacles have shown this. While a camera
placed in this way minimizes obstruction to the user’s field of view,
it records a highly distorted and incomplete facial view that is not
directly suitable for viewing in a videoconferencing application (see
Fig. 1, input). We therefore present a new conditional generative
adversarial network that learns to frontalise the full face in real-time
given the starkly distorted egocentric view as input. An adversarial
loss that operates on a sequence of estimated frontalised images
ensures temporal consistency while a perceptual loss is employed
to produce high fidelity results.

Our frontalisation algorithm purposefully refrains from estimat-
ing an intermediate representation of the full face performance on
the basis of a 3D morphable face model (3DMM), as it was done in
many previous face reenactment methods [Kim et al. 2018; Thies
et al. 2019]. 3DMMs usually lack the variable dimensions to repre-
sent all fine-grained nuances of eye gaze, eye blinks, facial micro-
expressions, or expressive mouth and tongue motion, which are im-
portant non-verbal cues in face-to-face communication. In addition,
even if these dimensions were parametrically modeled, estimating
them from a starkly oblique and distorted view is non-trivial. There-
fore, our frontalisation method only uses weak conditioning with
a neutral 3D face model without face expressions, and transfers
the fine-grained expression details from the egocentric view to the
frontal view by means of learned direct video-to-video mapping.
Our lateral fisheye-to-frontal transfer method solves a much

harder problem than established frontalisation settings [Cao et al.

2019; Peng et al. 2017; Yin et al. 2017; Zhang et al. 2019], and unlike
these it produces temporally coherent and photo-realistic renderings
with good audio-lip sync. Our technique photo-realistically captures
and frontalises a wide range of important expression details, eye
gaze and eye blinking, for which parametric expression model-based
solutions would struggle [Kim et al. 2018; Thies et al. 2020, 2019].
Our approach captures the lighting of a person’s surroundings by
observing the egocentric view and reproduces it in the frontal view.
We also demonstrate that adapting purely audio-driven methods for
face reenactment [Suwajanakorn et al. 2017; Thies et al. 2020] to
our frontalisation task does not suffice since subtle facial expression
cues are not uniquely correlated to speech and yet clearly appear in
the egocentric video. Our solution is trained in a supervised manner,
without manual annotations.

To summarise, we make the following contributions:

• A light-weight capturing setup that enables hands-free video-
conferencing and is easy to be integrated into smart glasses.

• A real-time video-to-video translation technique that uses a
new conditional neural network adversarially trained with
a temporal discriminator to transfer even subtle face expres-
sion details and extreme face expressions from an egocentric
fisheye to a frontal view.

• A thorough analysis showing that our approach reconstructs
frontal video 54% more accurately than established image-
to-image translation methods (pix2pix [Isola et al. 2017]),
visually outperforms 3DMM expression based solutions, and
runs in real time at 29.4 ms per frame.

2 RELATED WORK
We survey computer graphics and vision techniques that can poten-
tially enable videoconferencing in our scenario of a an egocentric
input view. Current techniques can be classified into frontalisation-
based and reenactment-based approaches. Frontalisation techniques
produce a frontal complete view of the face from an incomplete
side view, while reenactment methods transfer facial motions onto
prerecorded video [Kim et al. 2018; Thies et al. 2020, 2016]. Unlike
face frontalisation, reenactment focuses more on photo-realistic
editing in the same camera perspective.

2.1 Face Frontalisation
Face frontalisation techniques are commonly designed to transform
large or profile face poses in a camera view, where larger parts
of the face are occluded, into complete and frontal views of the
face. Existing approaches can be divided into face model based
[Cao et al. 2018, 2019; Hassner et al. 2015; Peng et al. 2017; Yin
et al. 2017; Zhu et al. 2016] and image-to-image translation-based
[Isola et al. 2017; Sagonas et al. 2015; Wiles et al. 2018; Zhang et al.
2019]. Model based techniques use a parametric 3D Morphable
Model (3DMM) to represent faces [Garrido et al. 2016]. Such model
provides a parametric control over the head pose and hence allows
frontalising the face as observed from a front looking camera. Zhu et
al. [Zhu et al. 2016] and Peng et al. [Peng et al. 2017] learn the
parameters of the face model from the input face using a deep
neural network. The network is trained using pairs of profile and
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frontal view faces. Such data is obtained by synthesising the profile
images from the frontal images. In Peng et al. [Peng et al. 2017], the
frontalisation network also learns to disentangle the identity from
the head pose. Yin et al. [Yin et al. 2017] use a GAN conditioned on
the the frontalised synthetic rendering to produce photo-realistic
results. The output is also constrained to maintain the identity of the
examined image. The approach of Cao et al. [Cao et al. 2018, 2019]
learns to frontalise the input by accessing the face texture through a
uv-map. A discriminator loss learns to differentiate between frontal
and non-frontal views.
Image-translation based techniques [Sagonas et al. 2015; Wiles

et al. 2018; Zhang et al. 2019] learn to frontalise faces without a
parametric 3D model. This bypasses some limitations imposed by
the restricted expressiveness of learned parametric expression and
shape models. Sagonas et al. [Sagonas et al. 2015] observe that
frontal faces have the minimum rank across all poses. They for-
mulate face frontalisation as an optimisation problem with nuclear
normminimisation. A statistical prior is learned from frontal images.
Zhang et al. [Zhang et al. 2019] propose a flow based approach for
face frontalisation. A flow field is initialised by SIFT-flow [Liu et al.
2008] and refined through a convolutional neural network. Most
current frontalisation technique focus more on improving facial
recognition techniques and not on producing photo-realistic and
temporally coherent video outputs [Cao et al. 2018, 2019; Sagonas
et al. 2015; Yin et al. 2017; Zhang et al. 2019]. In contrast, our method
produces photo-realistic frontalisations that are temporally coher-
ent. It does so by translating between a strongly distorted fish-eye
camera and a more regular frontal camera (see Fig. 1).
Paired image-to-image translation techniques [Isola et al. 2017;

Wiles et al. 2018] can also be used for frontalisation. X2face [Wiles
et al. 2018] train a network to extract a face embedding based on
a single image. The extracted latent code is used to synthesise a
new image of the target face with new expressions. Isola et al.’s
pix2pix [Isola et al. 2017] uses a Conditional Generative Adversarial
Network (CGAN) to translate an input image from one domain
to another. An adversarial loss pushes the output to resemble the
ground truth. While pix2pix shows interesting results, it is not
specifically designed for faces and hence has no prior knowledge
neither on face structure nor movement. It also processes each frame
in isolation. We demonstrate that applying pix2pix to our use-case
generates noticeable artifacts and deformations in the face structure.

2.2 Reenactment-Driven Solutions
Facial reenactment is the process of capturing the face expression
and pose from a source actor in video and transferring them to video
of a different target face. Many recent reenactment approaches rely
on model-based expression capturing. In contrast to classical com-
puter graphics approaches that render the modified target face on
top of the input video using a static face texture [Garrido et al. 2014;
Thies et al. 2016] or a dynamic texture [Thies et al. 2018b], neural
rendering approaches replace components of the standard graphics
pipeline by learned components. Deep Video Portraits [Kim et al.
2018] proposes an image-to-image translation approach that con-
verts synthetic renderings to realistic imagery. This approach is

inspired by pix2pix [Isola et al. 2017] and uses a U-Net architec-
ture as a generator that gets synthetic renderings of the underlying
3DMM as input. Kim et al. [Kim et al. 2019] presented a reenact-
ment technique which maintains the speaking style of the target
identity. The work shows the importance of this feature during
visual dubbing. paGAN [Nagano et al. 2018] generates a person-
alised avatar from a single image. A translation network trained on
several identities learns to bridge the gap between a model-based
rendering and its corresponding photo-real version. Deferred Neural
Rendering [Thies et al. 2019] introduced neural textures which store
high-dimensional neural descriptors. Such textures are interpreted
by a neural network to produce a photo-realistic output. Both, neu-
ral texture and the interpreting network are trained in conjunction
based on a short target video sequence, where the 3DMM face model
parameters are used to render the neural texture to image space.
While the approach is general and can be applied to novel view point
synthesis and scene editing, they also demonstrate high quality fa-
cial re-rendering and reenactment. In contrast to the model-based
approaches, there are also techniques that are not relying on a
3DMM face model prior. Based on a sophisticated multi-camera
setup, Lombardi et al. [Lombardi et al. 2018] learn a deep appear-
ance model, that takes a image as input to predict a latent model
descriptor that is interpreted by a decoder network. In a follow-up
work they show the ability of driving a highly photo-realistic avatar
through a VR-headset [Wei et al. 2019].
Recently audio and text driven reenactment approaches have

been proposed. Here facial expressions are not extracted from a
source video, but rather from a source audio or a text script. Fried et
al.’s [Fried et al. 2019] text-based editing technique maps phonemes
to the expression parameters of the 3DMM. This allows text-based
reenactment in photo-realistic and temporally smooth manner. Sev-
eral approaches for audio-driven reenactment are available [Chung
et al. 2017; Olszewski et al. 2016; Suwajanakorn et al. 2017; Thies
et al. 2020]. Thies et al. [Thies et al. 2020] presented Neural Voice
Puppetry, an approach for estimating facial expressions from the
audio and rendering it in a photo-realistic manner. They use Deep-
Speech [Hannun et al. 2014] to produce character logits from the
input audio. A network then translates the logits into the parameters
of a blendshape expression model. A synthetic rendering of a face
model is produced, followed by neural rendering for photo-realistic
results. Swajanakorn et al. [Suwajanakorn et al. 2017] define the
mouth shape with a number of keypoints, for which they regress
their positions from only the audio signal. With proper image com-
positing of the predicted mouth shapes, they show impressive high
quality visual renderings of the 44th president of the United States
BarackObama. Olszewski et al. [Olszewski et al. 2016] used the audio
signal to assist performance capture from a VR-headset. Here, audio-
based alignment techniques are used to map same utterance from
different subjects into the same animation parameters. We show
that purely audio-driven solutions do not suffice in our egocentric
videoconferencing setting since important non-verbal expressions
only appear on video.
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Fig. 2. (a) Proposed low-cost data capturing setup. We show the setup for the dynamic ((i)-left) and sitting ((i)-right) scenarios. The egocentric and front
cameras are synchronised by observing a simple transient event ((ii)-zoom on region). (b) We use a commodity RGB fish-eye camera attached to the side of
an eye glass frame. This captures the face from an egocentric perspective, which is passed to our frontalisation approach. Our device placement is always
tightened by a rubber band around the head to limit the camera movements/shakiness during recordings. (c) Samples of data generated by our recording
setups. Our approach learns to translate the egocentric view into the frontal view.

3 DATA RECORDING
We propose a recording setup for obtaining the training data of our
solution (see Fig. 2-a). The training data consists of paired egocentric
and front-view videos recorded using commodity RGB cameras.
The recorded videos are temporally synchronised using a simple
calibration stage. We have two data recording setups: one for a
dynamic scenario and another for a sitting scenario (see Fig. 2-a,
top row). They both use the same egocentric camera but differ in
the setup of the frontal camera.
Egocentric Camera: We use a low-cost RGB fish-eye camera to

capture the facial expressions (ELP-usbfhd01m-l180). The camera is
attached to the frame of an eye glass such that it minimizes obstruc-
tion to the user field of view and maximizes the face coverage (see
Fig. 2-b). It has a diagonal field of view of 180 degrees, and records
images with resolutions up to 1280 × 1960 at 30fps. Fig. 2-c shows
data samples captured by the egocentric camera. During test time,
these views are the input to our method. Specifically, our algorithm
learns to estimate the corresponding full face frontalisation. This
learning is supervised by a frontal camera.

Frontal Camera: We use a monocular RGB frontal camera placed
in front of the user to capture the face from the target perspective.
All our experiments in the dynamic scenario are shot using a com-
modity mobile phone camera. A commodity HD camera is used
for recording our experiments in the sitting scenario. The dynamic
scenario resembles situations where the user is moving around in
an environment with changing illumination and background. In this
case, our supervising camera is attached to a regular bicycle helmet
in a way to allow good face coverage (see Fig. 2-a, top-left), captur-
ing the face from a frontal view at a fixed location with respect to

the face. In the sitting scenario we place the supervising camera on
a tripod, and the user sits in front of it (see Fig. 2-a top-right).
In many sequences the user reads a collection of 111 english

pangrams1 while being recorded. The pangrams are read from a
laptop screen. Each pangram is a sentence containing all the 26
Latin letters. This captures a wide variety of visemes commonly
used in everyday speeches. In other sequences, subjects were asked
to talk freely, imitating a phone call, discussing a popular topic and
so on. In the dynamic scenario the user walks, in either outdoor or
indoor environment. In the sitting scenario the user sits on a chair
and moves his/her head naturally and freely. To synchronise the
egocentric and front camera recordings, we use a transient event.
i.e., a mobile phone screen observed from both cameras plays a
video of mostly black frames, but with a single white frame every 10
seconds (see Fig. 2-a, bottom, zoom on region). We start recording
from both cameras and wait until the white frame is observed. We
use this white frame to temporally synchronise the egocentric and
frontal recordings. The calibration is only done once at the start of
the data recording.

We recorded 27 sequences with 13 identities, and extracted them
at 24 frames per second. Sequences are on average 14000 frames long.
The original resolution of the egocentric view is 1280 × 1960 while
the original resolution for the frontal view is usually 1920 × 1080.
We manually take a tight crop around the face for both videos and
resize the resolution to 256× 256 while maintaining the aspect ratio.
In all experiments and comparisons we use 7500 frames for training,

1https://callibeth.com/downloads/pangrams111.pdf
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2500 frames for validation and the rest for testing. Tab. 1–2 in the
supplemental document lists the sequences used.

4 EGOCENTRIC-DRIVEN VIDEOCONFERENCING
Our egocentric videoconferencing learns to photo-realistically syn-
thesise video frames of head and upper body in frontal view based
on egocentric video frames; recreating eye blinks, eye gaze, person-
specific talking style and subtle non-verbal expressions, as well as
the realistic appearance under various illumination. In Fig. 3 we
show an overview of our approach. At the core, our method is a
video-to-video translation technique that gets an expression as well
as a head pose conditioning as input. The expression conditioning
is purely based on the egocentric input video, and, thus, is reflecting
the reality one-to-one without losing information that for example
could stem from the projection onto a low dimensional 3D expres-
sion model. As a pose conditioning, a rendering of a 3D face model
with neutral expression in the target view is provided to the trans-
lation network (see Sec. 4.3). In the following, we will describe our
approach in more detail.

Our translation network is inspired by the recent success of gener-
ative models in producing photo-realistic face renderings [Fried et al.
2019; Kim et al. 2019; Lombardi et al. 2019; Nagano et al. 2018; Thies
et al. 2019]. We use a conditional generative adversarial network
consisting of a generator network G and a discriminator D. Instead
of a single image, we process a sequence of 𝑁 = 11 frames result-
ing in a video-to-video translation network. The generator takes
as input the egocentric views Ei as conditioning on the expression
and renderings of the neutral face model Ci as pose conditioning. It
produces a sequence of photo-realistic renderings as viewed from a
frontal perspective. Note that the egocentric views not only contain
expression information but also information about illumination,
eye-gaze, eye-lid, tongue, etc., albeit in a possibly starkly distorted
way. Our network is trained in a supervised manner, with paired
egocentric and front-view data. The front-view data is collected
using a commodity RGB camera (see Sec. 3). It is used for the super-
vised rendering loss as well as for the extraction of the geometry,
reflectance and pose that are used for the pose conditioning. The
backgrounds of both the egocentric and front-view are removed us-
ing BiSeNet [Yu et al. 2018] (see Sec. 4.4). This allows better control
of the head pose and reduces artifacts around the face borders.

4.1 Network Architecture
Our generator network G is a U-Net-style convolutional neural
network. We stack the series of 𝑁 conditioning maps along the
feature dimension, resulting in a input size of dimension 6𝑁 × 256×
256. The output of the network are 𝑁 RGB-frames (3𝑁 × 256 × 256).
The U-Net consists of 7 down- and up-convolutional layers with skip
connections. All used kernel sizes have a spatial dimension of 4 × 4.
For the down-convolutions we use a stride of 2. The up-convolutions
are implemented as transposed convolutions. The resulting U-Net
based architecture contains seven levels (1282,642,322,162,82,42,22)
with an increasing number of feature channels per level (64, 128,
256, 512, 512, 512, 512). The decoder mirrors in the encoder. As a
discriminator network we use a patch-based convolutional network
similar to pix2pix [Isola et al. 2017]. Instead of feeding single images

to the discriminator, we input all 𝑁 frames of the window into the
discriminator. Thus, the discriminator works on the sequence level.
Besides the real or fake videos, the discriminator is conditioned on
the stack of input images (expression and pose conditioning).

4.2 Training
Our video-to-video translation network is trained according to the
non-saturating game [Goodfellow et al. 2014; Isola et al. 2017]. The
generator G minimizes the adversarial loss to provide outputs at a
high level of video-realism, whilst the discriminator D maximizes
the classification accuracy of real and fake videos. In addition to the
adversarial loss, we employ a content loss and a perceptual loss:

argmin
G

max
D

𝐸A (G,D) + 𝜆1𝐸𝐶 (G) + 𝜆2𝐸𝑃 (G). (1)

Here, 𝐸A (G,D) is the adversarial loss, 𝐸𝐶 (G) the content loss and
𝐸𝑃 (G) the perceptual loss. The individual losses are combined with
empirically determinedweights (𝜆1, 𝜆2) which are fixed to (𝜆1, 𝜆2) =
(10.0, 0.0025) in all our experiments.
The adversarial loss is defined as:

𝐸A (G,D) = EX,Y
[
logD(X,Y)

]
+ EX

[
log

(
1 − D(X,G(X))

) ]
. (2)

The input to the discriminator D is X, and either the predicted
output images G(X) or the ground truth images Y. X are the inputs
to our translation network containing the egocentric views E and
the pose conditionings C. The ℓ1-based content loss enforces the
output images G(X) to resemble the ground truth Y through

𝐸𝐶 (G) = EX,Y
[
∥Y − G(X)∥1

]
. (3)

Finally, as a perceptual loss 𝐸𝑃 , we employ the pretrained VGG-
Face network [Parkhi et al. 2015]. With respect to an ℓ1-norm, we
measure the distance between the predicted and the ground truth
images at the outputs of the convolutional layers 1, 6, 11, 18, 25 of
the VGG-Face network.

4.3 Pose Conditioning for Relative Head Movements
To enable the control of head movements in the target view, we
provide a synthetic face rendering as conditioning to the generator
network G. The conditioning is based on the rendering of a 3D face
model with neutral expression in the desired pose. This conditioning
gives us explicit control over the head pose in the synthesised output.
At train time the pose parameters as well as the neutral 3D face are
determined by monocular face reconstruction [Thies et al. 2016]. As
input to the monocular reconstruction approach, we use the images
of the front-perspective camera. Using the tracking information, we
render the albedo of the neutral face with the per frame estimated
rigid pose and the identity parameters (see Fig. 3).

4.4 Background Removal
The focus of our approach lies on the reproduction of a face that
reflects the captured images of the egocentric camera in a frontal
view. We do not handle the synthesis of a dynamic background.
To this end, we remove the background in our experiments using
the scene segmentation technique of BiSeNeT [Yu et al. 2018]. For
the frontal views used for training, we segment each frame and set
the background to black. We also remove the background for the
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Fig. 3. An overview of the proposed framework. Our approach learns to translate the egocentric view into a frontalised view. It extracts facial expressions from
the egocentric view, while the head pose and identity are controlled through a parametric 3DM face model. Our approach is trained using synchronised
egocentric and front view pairs. At test, results can be synthesised at arbitrarily sampled head poses (see star). Here, the original 3DM model parameters,
which were estimated during training, are modified to include no expressions, uniform illumination and the sampled head pose.

egocentric view. This allow us to achieve better pose control.We esti-
mate face segmentation mask for only one frame using BiSeNeT [Yu
et al. 2018], and use it for the rest of the sequence. We manually
adjust the mask so that the mouth is visible. Note how our approach
treats background removal of the frontal views differently from the
background removal for egocentric view. The rest of the paper will
keep this distinction.

4.5 Synthesis of a Frontalised Video at Test Time
Our generator network gets a sliding window of egocentric views as
input and produces per window a sequence of images. In contrast to
training time, we only consider the last frame that has been predicted
as the output of the examined window. Unless stated otherwise,
we sample head poses from the training set, and concatenate the
corresponding 3DMM renderings to the input of our system. The
illumination is not explicitly defined. Instead, our solution learns it
from the egocentric view. Our approach runs in real time. It takes
29.4 ms per frame on NVIDIA Tesla V100 for a 256 × 256 input.

5 RESULTS
In the following, we report the experiments that we conducted to
test our pipeline. To see the temporal consistency of our approach,
please examine the supplemental video. First, we show the perfor-
mance of our technique subjectively on several sequences, shot in
dynamic and sitting scenarios. The capabilities of our approach
in reproducing a wide variety of facial expressions are discussed,
and its ability to reenact an avatar is shown. To investigate the im-
portance of each component of our method, we conducted several
ablative studies (see Sec. 5.2). Specifically, we numerically quantify
results by estimating the photometric error between the renderings
and the ground truth frontal view. We also investigate other aspects
of our solution, including the impact of the training data size and

computational complexity. All components of our techniques are
evaluated in the main and additional supplemental videos (from
8:00 to 9:25 and from 11:40 to the end, respectively). In Sec. 5.3, we
compare against related state-of-the-art approaches. We examine
a wide variety of approaches, including pix2pix [Isola et al. 2017],
hypothetical advanced implementations of state-of-the-art facial
reenactment techniques [Kim et al. 2018; Thies et al. 2019], an audio-
driven reenactment approach [Thies et al. 2020] and an unpaired
image-based translation technique [Bansal et al. 2018]. Finally, we
discuss a user-study carried out on 44 subjects, analysing different
aspects of our approach.
All our sequences contain around 14000 frames extracted at 24

frames per second (please see the table of sequences in the additional
document). We use 7500 frames for training, 2500 for validation and
the rest for testing. Each sequence is trained for 100 epochs, and the
model producing the lowest validation error upon Eq. 1 is used. We
use learning rate of 0.0002, first momentum of 0.5 and batch size of
12. Kindly note that the 7500 frames for training and 2500 frames for
validation (less than seven minutes in total) are required per scene.
In the dynamic scenario, we show that this duration is sufficient for
reenacting a pre-recorded avatar of the same person (Fig. 7). This
shows that our approach can be applied in a person-specific manner
in the most practical use case of egocentric videoconferencing, i.e.,
when moving while talking.

5.1 Subjective Evaluation
Figs. 4–5 show the operation of our system in dynamic and sitting
scenarios. Our approach reproduces mouth movements and cap-
tures eye-gaze and eye-blinks. It also handles subjects with heavy
facial hair. In the dynamic scenario, our translation network learns
to reproduce the scene illumination by observing the egocentric
input. Our solution produces naturally moving head movements,
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Fig. 4. Our approach allows operation in a dynamic scenario. It captures a variety of facial expressions (mouth movement, eye-blinks, eye-gaze), scene
illumination and produces accurate audio-lip sync.

which is more evident in the sitting scenario. Here, results are con-
ditioned on the ground truth head pose. Fig. 6 shows that results
can be synthesised with different head poses. We randomly select a
start frame from the training set and take the corresponding neutral
faced 3DMM renderings as the conditioning to our input. The ren-
dered frames are taken sequentially from the start frame to ensure
temporal coherency. Results show that we maintain mouth move-
ment in the different poses, including a still static pose (last column).
Fig. 7 shows that our approach can reenact avatars of the same
identity. Here, we drive an avatar of the test subject using the input
egocentric view and randomly sampled head pose from the training
set. The avatars are wearing different clothing than the one worn at
test and were recorded in a different environment. The avatars were
also recorded using an egocentric camera. The clothing is consid-
ered a part of the egocentric background and hence was removed
using background removal. This limits its interference. In order for
reenactment to work, the egocentric camera position of the driving
sequence needs to be similar to the egocentric camera position of
the avatar. For this, we manually outline the egocentric face mask of

the avatar for just one frame. While wearing the device for the driv-
ing sequence, we adjust the camera position until it overlaps with
the egocentric avatar face mask. This adjustment is made in real
time. Our reenactments (Fig. 7) are photo-realistic and temporally
coherent, capturing facial expressions and eye movements.

In Fig. 8, we evaluate our approach on stress cases of expressions.
Each subject was asked to repeat a set of expressions including
tongue-movement, lip-rolling in, lip-rolling out and bloating. Such
expressions are challenging to reproduce through parametric ex-
pression modelling. To reduce the impact of head movement on
such extreme expressions, the subject’s head was rested over a blue
pillow. Subjects were asked to blink normally and not to move much
during recording. Fig. 8 shows that our technique can reproduce
a wide variety of expressions with no artefacts including asym-
metrical smirks (see the last two rows). Results are photo-realistic
and temporally coherent (please see the supplemental video). Note
for these sequences we turned off pose conditioning as the model-
fitting can struggle to disentangle head pose from the expressions.
We also did not remove the background from the egocentric view,
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Fig. 5. Our approach also can operate in a sitting scenario. It captures mouth movements, eye-blinks, eye-gaze, head movement, different hair-styles and a
wide range of head poses (e.g., in the last two rows). Here, the user moves his head extremely in yaw/pitch. All sequences use 7500 frames for training and
2500 frames for validation.

which allowed our approach to learn and synthesise natural head
movements. Fig. 9-a shows a cross-identity result where the final
output identity (iii) is different from the original identity (ii). We first
apply our frontalisation approach to the egocentric view (i), which
produces (ii). We post-process (ii) using the neural renderer of [Kim
et al. 2018]. We train the renderer on the face region only (see iii,
inset) and copy the background from the target video. This dedicates
more network capacity to the face which helps in better render-
ing the mouth interior. The same approach can remove the glasses
and redress the input while maintaining his identity, see Fig. 9-b.
Note that results might experience some audio mis-sync. Future
work can examine a dedicated loss for the mouth region [Fried et al.
2019]. Fig. 10 shows that our technique can handle less obstructing
camera positions, i.e., the camera is moved even closer to the face.
Despite the input view is more distorted and more incomplete than
earlier examples, our approach still produces temporally consistent

photo-realistic results and is even capable of reproducing asymmet-
rical smirks. As in all sequences, we used 7500 and 2500 frames for
training and validation, respectively.

5.2 Quantitative Evaluations
We performed multiple experiments to assess the importance of
each design choice of our pipeline (Figs. 11–13). Most artefacts
are in the form of temporal shakiness as well as unnatural head
movements and deformations and therefore best viewed in a video
(please see our supplemental video). To aid in examining the results
on paper, we performed quantitative evaluations by estimating the
photometric error between the output and the ground truth frontal
view. The error is estimated as the Euclidean distance on the RGB
space (in the range of 0-255). We report the average per frame error
and the corresponding standard deviation. This is always shown at
the top (right or left corner) of the error heat-maps. The standard
deviation gives a good indication to the degree of temporal stability;
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Fig. 6. Our approach allows controlling the head pose during the test while maintaining the mouth movements. Here, we synthesise results at different poses
sampled from the training set. Pose1 is the result synthesised at the ground truth head pose. Pose 4 is a static head pose. Please see the supplemental video.

Fig. 7. Our approach reenacts an avatar of the same person wearing different clothes and shot in a different environment, capturing mouth and eye movements.

higher variance corresponds to stronger temporal shakiness. Note
that for numerical evaluations, results must be synthesised at the
ground truth pose, and hence we do so when necessary (Figs. 11–15,
17).

Fig. 11 shows that removing pose conditioning leads to significant
artefacts. This is due to the one-to-many expression-to-frontal view
mappings. Conditioning on the pose without removing the egocen-
tric background leads to video artefacts. Background removal of the
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Fig. 8. Our approach captures a wide variety of expressions including bloating, lip-rolling, tongue movement and eye-blinks. These expressions are not easily
captured by a 3DMM. Our approach also reproduces asymmetrical smirks (see the last two rows).

egocentric view helps in disentangling head pose from the rest of
the facial components, and thus allows better synthesises, especially
at different head poses (see Fig. 6). This is an essential feature of
our solution as it reduces the reliance on knowing the ground truth
pose during the test. Removing perceptual loss leads to shaky re-
sults and artefacts. This is shown by the higher error. Fig. 13 shows
that a VGG-Face [Parkhi et al. 2015] perceptual loss produces more
accurate results than a VGG16 [Simonyan and Zisserman 2015]
loss. Fig. 12 investigates different face representations for pose con-
ditioning. Conditioning using the facial landmarks instead of the
3DMM-based renderings produces unstable results. This is due to
the sparse nature of facial landmarks which loses many elements
of the face structure. In addition, facial landmarks contain an ex-
pression component, and hence it is challenging to disentangle and
control the head pose. While a face contour representation can con-
tain a weaker expression component and is popular for conditional
face generation [Zakharov et al. 2019], it still produces artefacts
in the form of temporal flickering (see error map). 3DMM-based

pose conditioning, however, produces the best visual and numeri-
cal results. We hypothesise this is due to its ability to disentangle
expressions from the identity and pose.

Fig. 14 shows an ablative study with respect to the training data
size. We trained models using 7500, 5000 and 2500 frames. For each
model, we report the photometric error between the ground truth
and our results, as well as the corresponding means and standard de-
viations. We also examine the visual quality and compare it against
ground truth. Results show no significant loss in quality between
training with 7500 frames and 5000 frames, as indicated numerically
and visually (see additional supplemental video). This shows the
potential of our approach in using less training data. However, some
temporal flickering can occur due to less training data, especially
when training with 2500 frames. Fig. 15 examines the processing
speed of our approach on two input resolutions. On Tesla v100, one
frame of a 256 × 256 resolution takes 29.4 ms to process, while a
128 × 128 frame takes 23.75 ms. On Titan 2080 Ti, one frame takes
45.1 ms for 256 × 256 and 27.6 ms for 128 × 128. While the speedup
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Fig. 9. (a) Cross-identity result where the final output identity (iii) is differ-
ent from the original identity (ii). (b) An example of removing glasses and
redressing the input subject while maintaining his identity. In both cases,
we modify the face region of a target video (last column, inset).

Fig. 10. Our approach handles extremely distorted and incomplete inputs.
It produces photo-realistic results and even captures asymmetrical smirks.

gain in processing 128 × 128 images is noticeable, Fig. 15 shows
that the loss in visual quality may not be significant (please see
the additional supplemental video). We argue that 128 × 128 is suit-
able for our videoconferencing application, especially if the final
rendered output is to be viewed on a mobile phone screen. The
processing time is taken as the average of three sequences (each
processed five times). It also includes image reading and writing
times to simulate possible delay due to video transmission. Note for
real-time processing, the per-frame processing speed should be at
most 40 ms (25 fps).

5.3 Comparisons to Related Techniques
We compare our approach against related image- and audio-based
techniques. In all our comparisons, we use the same training, vali-
dation and test set used by our technique:

• pix2pix [Isola et al. 2017] is a paired image-to-image transla-
tion approach using a conditional GAN. We train pix2pix to
learn the frontal mapping from the egocentric view.

• We implemented hypothetical egocentric-compatible ver-
sions of two high-quality reenactment techniques [Kim et al.
2018; Thies et al. 2019]. The aim of this study is to investigate
the limitations inherited from an expression model-based
solution. We examine both Deep Video Portraits [Kim et al.
2018] and Deferred Neural Rendering [Thies et al. 2019]. Since
these approaches can not handle our egocentric view, we in-
stead used the corresponding frontal view as input.

• Neural Voice Puppetry (NVP) [Thies et al. 2020] is a recent
audio-driven reenactment approach. It takes as input the
audio signal and modifies the lower-part of the face of a pre-
recorded video.

• We compared our reenactment against state-of-the-art un-
paired image translation technique, Recycle-GAN [Bansal
et al. 2018]. This is to assess its ability to reenact avatars
wearing clothes and shot in environments different from the
driving sequence.

Subjective and numerical evaluations show that pix2pix strug-
gle with handling our egocentric views and generate noticeable
artefacts (see Figs. 16 and 17). Results are often shaky with unnatu-
ral movements as reflected by the high error variance (please see
supplemental video). The expression-model used in Deep Video
Portraits [Kim et al. 2018] and Deferred Neural Rendering [Thies
et al. 2019] limits the range of expressions that can be reproduced.
In addition, fitting the face model to a heavily bearded subject can
be erroneous and produce significant visual artefacts (see Fig. 18,
mouth region). Such poor performance is also reflected quantita-
tively in Fig. 20. Neural Voice Puppetry [Thies et al. 2020] produces
photo-realistic results (see Fig. 19). However, since it modifies the
lower part of a prerecorded video, it does not reproduce the ground
truth upper face movement (e.g., blinking) nor captures the scene
illumination. Furthermore, as being an audio-based solution, it is
sensitive to background audio noise. This could lead to inaccurate
mouth movements (Fig. 19, third row). Finally, reenactment using
the state-of-the-art unpaired image translation technique Recycle-
GAN [Bansal et al. 2018] fails in reproducing eye blinks and mouth
movements (see Fig. 21, red arrows). This leads to noticeable arte-
facts, with the avatar not speaking (see the video). Our approach
nevertheless can drive a target avatar using egocentric expressions,
even when wearing clothes not seen during training.

We also compared our method against a warping-based head pose
synthesis approach based onX2face [Wiles et al. 2018]. X2face [Wiles
et al. 2018] is used to edit the head pose according to the yaw, pitch
and roll of a target video. We assume the ideal case of perfect pose-
free frontalisation and edit the head pose of a single source image.
We estimate the head pose of the target video using the approach
of Ruiz et al. [2018]. In Fig. 22, we show that such a warping-based
approach leads to severe artefacts in the background and also torso
region (see the red regions). In contrast, our approach outputs photo-
realistic results while also not only synthesising the head pose
changes but also the facial expressions.
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Fig. 11. An ablative study of our approach. For each design choice (row) we show the photometric error (ℓ2 in RGB space) between our results and the ground
truth. Removing a specific design choice leads to more temporally inconsistent results (see std. deviation). Especially, removing the face model conditioning
leads to significant artefacts. The right subject has a larger standard deviation of the error than the left subject as his original motion pattern is more dynamic.

Fig. 12. The effect of using face contours and face landmarks [Bulat and
Tzimiropoulos 2017] for pose conditioning as opposed to using a 3DM face
model. Face landmarks produce localised artefacts as in the mouth interior
(see zoomed regions). Face contours produce spatially spread artefacts (see
error maps) which flicker temporally. 3DMM based conditioning, however,
produces the best results.

5.4 User Study
We performed two surveys to assess the results produced by our
approach visually. In the first survey, we compared our approach
against pix2pix [Isola et al. 2017] and examined the importance of
using our face model conditioning. We showed the users two long
and continuous videos for pix2pix, and two long and continuous
sequences for our solution without face model conditioning. Each
sequence is 45 seconds long and contains to its side (either left
or right) the output video of our full solution. The order of the
videos was shuffled. A participant was asked the following question:

Fig. 13. A VGG-Face [Parkhi et al. 2015] perceptual loss produces more
temporally coherent results than a VGG16 [Simonyan and Zisserman 2015]
loss. This is reflected here by the lower error mean and standard deviation.

"which video looks more natural to you", and his/her answer was
reported by either choosing left or right. Users were asked to listen
to the audio. Out of 41 participants, 84% rated our results more
natural than pix2pix. In addition, our approach was rated 85.2%
more natural than when no conditioning is used. These results
show the significance of our approach and its design choices. It also
shows that when no conditioning is used, results similar to pix2pix
are produced, (with difference of 1.2%, less than 1 participant). In
the second survey, we investigated how real our results look. We
displayed twenty videos, ten being real and ten produced by our
approach. The videos ordering was shuffled. Participants were asked
to rate their agreement to the statement "this video looks natural
to me" using a linear scale from strongly agree, agree, do not know,
disagree and strongly disagree. All backgrounds in the videos were
black. We asked users to ignore this and any artefacts occurring
around them in their ratings. We also asked the users to listen to
the audio. Out of 44 participants, 62.7% agreed that our results look
natural. Note that 77.5% of the respondents agreed that the original
videos look natural. While this shows a 22.5% baseline error due to
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Fig. 14. Impact of different training data sizes. Here, we show qualitative
results and the photometric error visualisation over the full sequence. Results
show that we can produce similar results with variable training sizes, while
the qualitative difference is barely noticeable (especially in 7500 vs 5000).

Fig. 15. Our approach achieves similar reconstruction error when processed
at 128 × 128 and 256 × 256. Hence while 128 × 128 leads to more speedup,
the visual quality loss is not significant (see the additional video).

users suspicion, it also shows that our approach produces decent
and naturally-looking results.

6 LIMITATIONS AND FUTURE WORK
In our experiments, we processed a wide variety of sequences in dy-
namic and sitting scenarios. At the moment, our solution is person-
specific and constrained to the expressions seen at training time.
Fig. 23 (a) summarizes the result of mixing four different identities
in one model. Our technique reproduces the correct identity if it is

Fig. 16. pix2pix [Isola et al. 2017] generate temporally inconsistent results
with visual artefacts (see the first row and the red arrow/nose).

Fig. 17. Quantitative evaluations show that our approach significantly out-
performs pix2pix [Isola et al. 2017].

included in the training set (see Fig. 23-a, i & ii). Results, however,
can experience temporal flickering (see Fig. 23-a, ii, red regions).
Testing on unseen identities hallucinates incorrect renderings with
strong artefacts (see Fig. 23-a, iii). Here, the network attempts to
reproduce the training identity that looks most similar to the test
identity. A future research direction for addressing these issues
could be to expand the network capacity to accommodate for the
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Fig. 18. Comparison against the advanced (hypothetical) implementation of Deep Video Portraits [Kim et al. 2018] and Deferred Neural Rendering [Thies
et al. 2019]. Here, the face model parameters are estimated from the supervising front-view camera. Despite that, our approach still produces significantly
better results (see mouth zoom-ons). It better handles mouth and tongue movements, eye-blinking (see red arrow) and heavy bearded subjects.

Fig. 19. Neural voice puppetry [Thies et al. 2020] is an audio-driven reenactment solution and hence does not capture ground truth non-verbal expressions
(see eye blinks in the first two columns, red arrows) nor scene illumination. It is also sensitive to background audio noise which could lead to inaccurate mouth
movements (third column, red arrow). Our approach resembles ground truth more accurately.

variations that occur over multiple identities. Our work focuses on
reconstructing faces, and hence future efforts can investigate ren-
dering backgrounds in a dynamic scenario. While our technique can
synthesise results at arbitrary head poses (shown in Fig. 6 and the
supplemental videos), synthesising results at the ground truth head
pose can aid photo-realism. Future work could investigate learning
the ground truth head pose from the audio signal [Ginosar et al.
2019; Shlizerman et al. 2017] or directly obtaining it from an IMU
as in [Li et al. 2015; Olszewski et al. 2016]. Finally, our technique
can struggle with scenes shot in very dark illuminations, leading to
artefacts (see Fig. 23-b).

7 CONCLUSION
We introduced the first real-time hands-free egocentric videoconfer-
encing approach for mobile eyewear devices. Our technique takes
as input distorted and incomplete egocentric facial views. It learns
frontal facial expressions, and the coarse facial details such as the

identity and head pose from a parametric 3D headmodel.We achieve
state-of-the-art frontalisation results that are temporally stable and
expressive. The experiments show that our approach operates well
in dynamic and sitting scenarios, and reenacts avatars of the same
person wearing different clothes. It also captures a wide variety of
challenging expressions such as tongue and depth inducing move-
ments, not easily captured by an expression model-based solution.
We compared against a variety of related techniques and evaluated
the design choices of our solution subjectively and numerically. We
believe that our approach is a stepping stone towards new hybrid fa-
cial animation systems that can use both a parametric model as well
as image-translation based conditioning for capturing fine details.
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Fig. 20. Our approach achieves lower photometric error in comparison to an advanced implementation of Deep Video Portraits [Kim et al. 2018] (top) and an
advanced implementation of Deferred Neural Rendering [Thies et al. 2019] (bottom). The lower standard deviation of Deferred Neural Rendering++ is due to
output with less motion than ground truth.

Fig. 21. Our approach reenacts an avatar using expressions from the egocen-
tric input (shown in insets). While our reenactment captures the expressions
of the frontal view (left), Recycle-GAN struggles with reproducing mouth
and eyemovements (see red arrows) and leads to strong artefacts (see video).
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Fig. 22. Comparing our predictions against warping-based head pose syn-
thesis. Here, the target head pose is estimated using [Ruiz et al. 2018] and
X2Face [Wiles et al. 2018] drives a single source image by editing its pose.
Such an approach generates significant artefacts in the head geometry, as
well as in the background and body torso (see red regions).
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